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ABSTRACT. Sensitivity analysis for mathematical simulation models is helpful in identifying influential parameters for model
outputs. Representative sets of APEX (Agricultural Policy/Environmental eXtender) model data from across the U.S. were
used for sensitivity analysis to identify influential parameters for APEX outputs of crop grain yields, runoffiwater yield, water
and wind erosion, nutrient loss, and soil carbon change for a national assessment project: the Conservation Effects
Assessment Project (CEAP). The analysis was based on global sensitivity analysis techniques. A test case, randomly selected
from the representative sets of APEX model data, was first analyzed using both the variance—based sensitivity analysis
technique and the enhanced Morris method. The analysis confirmed the reliability of the enhanced Morris measure in
screening subsets of influential and non—influential parameters. Therefore, the enhanced Morris method was used for the
national assessment, where the cost of applying variance—based techniques would be excessive. Although sensitivities are
dynamic in both temporal and spatial dimensions, the very influential parameters (ranking 1st and 2nd) appear very
influential in most cases. Statistical analyses identified that the NRCS curve number index coefficient is very influential for
runoff and water—related output variables, such as soil loss by water, N and P losses in runoff. The Hargreaves PET equation
exponent, moisture fraction required for seed germination, RUSLE C factor coefficient, and the potential heat units are

influential for more than two APEX outputs studied. .
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onservation programs help establish sustainable

production systems and reduce the environmental

impacts associated with farming activities; howev-

er, the environmental benefits have not previously
been quantified for reporting at the national scale. With the
2002 Farm Bill came the requirement that USDA-NRCS as-
sess the environmental effects of the Farm Bill sponsored
programs. Subsequently, the Conservation Effects Assess-
ment Project (CEAP) was developed. NRCS and ARS are
working together, in collaboration with other federal agen-
cies and universities, to implement CEAP. CEAP consists of
two main components: the national assessment and the wa-
tershed assessment studies (Mausbach and Dedrick, 2004).
The purpose of the national assessment is to estimate the en-
vironmental benefits obtained from USDA conservation pro-
grams at the national level. The purpose of the watershed
assessment studies component of CEAP is to complement the
national assessment by providing more in—depth assessment
of water quality and other benefits at a finer scale of resolu-
tion than is possible at the national level.
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CEAP is an on-going mix of data collection, model
development, model application, and analyses of results.
Computer modeling is an essential part of this assessment
since it is not possible to monitor the numerous conditions
where the conservation practices are implemented. The
national assessment involves field-level modeling and
watershed—level modeling. Field-level modeling will be
conducted for each of the National Resources Inventory
(NRI) sample points comprising the CEAP sample using
Agricultural Policy / Environmental eXtender (APEX)
(Williams et al., 2000). Offsite estimates will be conducted
at the 8—digit watershed scale using a combination of models
and databases named Hydrologic Unit Modeling for the
United States (HUMUS) (Srinivasan et al., 1993, 1998).
HUMUS includes databases on land use and sources of
nonpoint and point source pollutants used with the Soil and
Water Assessment Tool (SWAT) (Neitsch et al., 2002) to
assess water quantity and water quality issues. APEX is used
for cultivated cropland because of its strength in simulating
agricultural management systems. Outputs from the APEX
model are aggregated at the 8-digit watershed level in
HUMUS/SWAT. HUMUS/SWAT simulates the hydrology
and water quality for non-agricultural land uses and the
transport of flow, sediment, nutrients, and pesticides from the
land to the outlet of each of the 8—digit watersheds and routes
the flow downstream to the next water body. Results will be
used to provide national and regional estimates.

An extremely important component of the assessment is
the required calibration and validation of the chosen
environmental effects simulation models. The need for
sensitivity analysis to identify the influential parameters for
model calibration is universally acknowledged. Sensitivity
analysis is also a prerequisite for model building (Crosetto et
al., 2000) and is potentially useful in the model development
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stage as a quality assurance tool to ensure that the assumed
dependence of model output on the model input parameters
makes physical sense.

This article focuses on the sensitivity analysis of the
APEX modeling aspect for the CEAP national assessment.
The scale of this study limits individual analysis for each
individual location and management condition. The objec-
tive of this study was to identify the influential parameters of
the APEX model by applying an efficient sensitivity analysis
method to representative sets of APEX model data from
across the U.S. Therefore, the model calibration procedure
can focus on those influential parameters while fixing those
non-influential model parameters. The variance—based sen-
sitivity analysis and the Morris method and its enhanced
version are briefly described in this study. A case study,
randomly selected from the representative sets of APEX
model data, was conducted to compare the rankings based on
variance—based measures and the rankings based on en-
hanced Morris measures. The more efficient enhanced
Morris method was then chosen for sensitivity analysis for
the national assessment.

MATERIALS AND METHODS
APEX

APEX was developed as an extension of the Environmen-
tal Policy Impact Calculator (EPIC) model (Williams, 1990;
Williams and Sharpley, 1989) to enable simulation of large
complex farming systems in whole farm and small watershed
management. APEX tracks water, nutrients, pesticides,
carbon, and soil erosion on a daily basis as functions of daily
weather data, soil characteristics, and agricultural manage-
ment practices such as planting, tillage, and nutrient
applications.

Water movement, soil chemistry, and crop growth are
interrelated. The hydrology component simulates runoff,
infiltration, percolation, lateral subsurface flow, evaporation,
and snow melt. Several methods can be used to estimate
runoff, peak flow, and potential evapotranspiration. The
selected methods for the CEAP study are listed in table 1.
APEX simulates soil erosion caused by wind and water. Sheet
and rill erosion result from runoff, rainfall, snow melt, and
irrigation. Seven alternative prediction equations, which are
variations of the Universal Soil Loss Equation (USLE), may
be used to estimate erosion and sedimentation. The user
specifies one as the driving equation. For the CEAP study,
MUST was selected (table 1) as the driving equation,
although estimated outputs according to RUSLE and
MUSLE are also produced.

Wind erosion is estimated using the Wind Erosion
Continuous Simulation (WECS) method, which requires the
daily distribution of wind speed to take advantage of the
mechanistic erosion equation. The approach estimates
potential wind erosion for a smooth bare soil by integrating

Table 1. Selected methods for the CEAP study.

Component Method
Runoff NRCS curve number method
Peak flow Modified rational method

Potential evapotranspiration
Erosion/sedimentation
Curve number

Hargreaves method
MUST
Variable daily (Soil moisture index)
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the erosion equation through a day using the wind speed dis-
tribution. Then potential erosion is adjusted using four fac-
tors based on soil properties, surface roughness, cover, and
distance across the field in the wind direction.

Nutrient cycles are simulated for both the organic and
mineral fractions of nitrogen (N) and phosphorus (P). The
fractions are subdivided into pools. The nutrient additions
and losses and the transformations between the different
pools are calculated on a daily time—step through a series of
coupled equations that are solved within a mass balance
framework.

Plant development is simulated on a time scale based on
heat unit accumulation. Potential growth, a function of
intercepted solar radiation, is constrained by the most
limiting stress (water, N, P, temperature, aeration). All
farming operations that take place on the field throughout the
year are taken into account. Annual crop growth occurs from
planting date to maturity. The effects of weather, soil water
content, and bulk density on soil temperature are computed
daily for each soil layer. The soil is modeled as a series of
horizontal layers through which water and dissolved materi-
als move and through which plant roots penetrate. The tillage
practice effects are simulated by incorporating nutrients and
crop residues within the plow depth, changing soil bulk
density, and converting standing residue to flat residue.
Detailed descriptions of the mathematic relationships used to
simulate the processes can be found in Williams and
Izaurralde (2006).

DATABASE FOR APEX SENSITIVITY ANALYSIS

The APEX model requires inputs of daily weather, soil,
field management, and site information. Model parameters in
the APEX database include the parameters for crops,
fertilizers, tillage operations, and pesticides. There is also a
parameter file, which contains many equation coefficients,
definitions of s—curve, and miscellaneous parameters used in
APEX. Representative sets of data (locations shown in fig. 1)
from across the U.S. were selected from the domain for the
National Nutrient Loss and Soil Carbon database (Potter et
al., 2006), which were upgraded to APEX model input
formats. These APEX model runs (continuous simulation of
1960-2001) were selected to represent the variation in
climate, irrigation, soil texture group (fine, moderately fine,
medium, moderately coarse, coarse, organic), major crops
(currently only soybeans, corn, and winter wheat are
included), and tillage system (conventional, mulch, and
no-till) (table 2).

The average annual precipitation for these selected
locations is from 238 to 1493 mm. Figure 2 shows the
frequency distribution of the average annual precipitation.
The average monthly maximum temperature is from —10°C
to 40°C, and the average monthly minimum temperature is
from -21°C to 23°C for these selected locations (fig. 3).

PARAMETERS CONSIDERED FOR SENSITIVITY ANALYSIS
APEX contains a large number of inputs and model
parameters. Ideally, all parameters should be screened to
determine relative importance. However, this would result in
a large number of simulations considering the magnitude of
this study. The parsimony principle (Trocine and Malone,
2000) states that only a few parameters are responsible for
most of the variability of model outputs, while most other
parameters contribute little. Therefore, the sensitivity analy—
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Figure 1. Locations of the selected APEX model dataset.

Table 2. Representing soils, crops, and tillage included in the study.

Representative Type No. Total No.
Soil texture group
Coarse 25 159
Fine 28
Medium 64
Moderately coarse 18
Moderately fine 22
Organic 2
Hydrologic group
A 18 159
B 75
C 37
D 29
Crop
Soybeans 40 159
Corn 66
Winter wheat 53
Tillage
Mulch 23 159
Conventional 118
No-till 18

sis performed in this study was restricted to 15 parameters
(table 3), which were selected by experience and believed to
be potentially important parameters governing the major pro-
cesses represented by APEX. The ranges of the 15 selected

parameters were based partly on the values recommended for
APEX in the model documentation (Williams et al., 2003)
and partly on expert knowledge and experience.

The root growth-soil strength parameter (RGSS) sets the
soil strength constraint on root growth. The root growth stress
decreases with the increase of RGSS. The soil water lower
limit in the top 0.5 m of soil (SWLL) is a fraction of wilting
point. The N fixation (NFIX) limits N fixation estimates
based on soil water, nitrate content, crop growth stage, or
crop N uptake demand. The soluble P runoff coefficient
(SPRC) is the P concentration in the sediment divided by that
of the water. Biological mixing occurs at the end of each year
at an efficiency set by BMEF and a maximum depth set by
BMMD. HPETE is the air temperature difference exponent
in the modified Hargreaves method (Hargreaves and Samani,
1985; Williams and Izaurralde, 2006). PET increases with the
increase of HPETE. The NRCS curve number index
coefficient (CNIC) drives the NRCS curve number (USDA,
1972) retention parameter as a function of precipitation, PET,
and the maximum retention parameter. Higher values of
CNIC increase runoff and the corresponding sediment losses,
and vice versa. The effect of crop residue on the RUSLE C
factor is governed by the exponential coefficient (RCFC).
The exponential coefficient of tillage effects on residue
decay rate (TERD) impacts carbon mineralization.

The potential heat units (PHU) are the number of heat
units required for a specific crop to mature at a specific

Frequency
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Figure 2. Average annual precipitation (1960-2001) frequency distribution for the selected locations.
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Figure 3. Average monthly maximum (TMX) and minimum (TMN) temperature (1960-2001) for the selected locations.

location. The heat units are accumulated degrees of tempera-
ture (Celsius) between the day’s mean temperature and the
crop’s minimum growth temperature. The fraction of humus
in the passive carbon pool (FHP) partitions the carbon in the
humus between the passive and slow pools. The daily wind
speed distribution is simulated using the modified exponen-
tial equation (Williams and Izaurralde, 2006), where the
power parameter (UXP) adjusts the exponential distribution
of wind speed. The groundwater storage is subject to deep
percolation from the system and return flow (to channel). The
return flow ratio (RFP) sets the return flow portion.

SENSITIVITY ANALYSIS

The effects of the parameters listed in table 3 were
assessed for APEX model outputs of runoff (Q), water yield
(WYD) (including surface runoff, lateral subsurface flow,
and return flow from groundwater, which contribute to
streamflow), soil loss by water (SED), soil loss by wind
(YWDN), soluble P loss in runoff (QP), soluble N loss in
runoff (QN), particulate P loss (YP), particulate N loss (YN),
soil organic carbon change (WOC), and crop grain yield
(YLD). These APEX outputs are of considerable interest to
the national assessment. It is essential for the sensitivity
analysis to determine which parameters most influence these
outputs by ranking their importance. In this study, the ranking

1st to 4th parameters were regarded as influential, and param-
eters ranking below 10th were regarded as non—-influential.

Parameter Overall Influence

Model parameters interact within the linked system of
equations of the model to produce the simulation outputs.
The overall influence of a parameter is the sum of all effects
involving that parameter, including both the main effect and
the interaction effects. The main effect of an input parameter
is the effect that is additive on the output and independent of
the values that the other parameters may take. An input
parameter has interaction effects if its effect on the output
depends on the values that the other parameters may take. For
instance, in the model of bulk density change in the plow
layer (Williams, 1995):

BDP = BDP, — (BDP, — %BDO) (EF) (1)

where BDP is the bulk density in soil layer P after tillage,
BDP, is the bulk density in soil layer P before tillage, BD,, is
the bulk density of the soil when it has completely settled af-
ter tillage, and EF is the mixing efficiency of the tillage op-
eration. The main effect of BDP, is the first term BDP,
because its effect on the model output is additive and inde-
pendent of the values of the other parameters. The interaction

Table 3. APEX input parameters and their ranges considered in sensitivity analysis.

Parameter Lower Upper
Input File (Abbreviation) Description Range Range
PARM parm2 (RGSS) Root growth soil strength 1 2
parm5 (SWLL) Soil water lower limit in the top 0.5 m soil depth 0.3 0.7
parm7 (NFIX) N fixation 0 1
parm8 (SPRC) Soluble P runoff coefficient 10 20
parm11 (MFSG) Moisture fraction required for seed germination 0.4 0.7
parm29 (BMEF) Biological mixing efficiency 0.1 0.5
parm31 (BMMD) Maximum depth for biological mixing (m) 0.1 0.3
parm34 (HPETE) Hargreaves PET equation exponent 0.5 0.6
parm42 (CNIC) NRCS curve number index coefficient 0.5 5
parm46 (RCFC) RUSLE C factor coefficient 0.5 5
parm52 (TERD) Exponential coefficient of tillage effect on residue decay rate 5 15
OPS PHU Potential heat units (°C) 800 2400
SOIL FHP Fraction of humus in passive pool 0.3 0.9
APEXCONT UXP Power parameter of modified exponential distribution of wind speed 0.1 0.6
RFP Return flow ratio 0.4 0.95
682 TRANSACTIONS OF THE ASABE



effect of BDP, with EF is given by the term (BDP,)(EF) be-
cause the effects of BDP, and EF both depend on the value
the other parameter may take.

The number of interaction terms usually grows with the
number of parameters and with the range of variation of the
parameters (Saltelli et al., 2000a). The overall influence is
the appropriate measure in identifying those parameters that
have a significant impact on model output either as a main
effect or an interaction effect.

Variance-Based Sensitivity Analysis

Variance—based sensitivity analysis estimates the frac-
tional contribution of each parameter to the total variance of
the model output (Archer et al., 1997; Saltelli et al., 2000b).
The extended Fourier amplitude sensitivity test (FAST)
method (Saltelli et al., 1999) and the method of Sobol (Sobol,
1993; Homma and Saltelli, 1996) are capable of estimating
the total sensitivity index, defined as the sum of all effects
involving the parameter. The extended FAST was used by
Wang et al. (2005a) for EPIC and by Wang et al. (2005b) for
DRAINMOD-N II (Youssef et al., 2005). Description of the
extended FAST sampling procedure and the computational
details can be found in Saltelli et al. (1999, 2000a, 2000b) and
Schwieger (2004). The core feature of the sampling is based
on Fourier transformation of multidimensional input factors
into a frequency domain, which constructs a search curve that
scans the entire input space (Saltelli et al., 2000b). In this
study the extended FAST sampling and FAST total sensitivity
index computation were performed using the public domain
tool SIMLAB (Joint Research Centre, 2003). FORTRAN
code was developed to automatically update APEX input
files with generated parameters, launch the APEX run, and
organize APEX outputs into SIMLAB required format for
computing FAST total sensitivity indices.

Variance—based sensitivity analysis is very reliable for
analyzing non-linear and non-monotonic hydrological and
water quality models (Melching and Yoon, 1996) because it
is “model free” in the sense of independence from assump-
tions of linearity. Furthermore, sensitivity indices are
quantitative measures. The main drawback of the variance-
based analysis is the computational cost, as it requires a large
number of model runs (Campolongo et al., 2005). An
alternative to the variance—based sensitivity analysis is the
enhanced Morris measure proposed by Campolongo et al.
(2005).

Morris Method and Its Enhanced Version

The Morris method (Morris, 1991) calculates the total and
interaction effects. The experimental plan proposed by
Morris is composed of individually randomized “one factor
at a time” (OAT) experiments in which the impact of

changing the value of each of the chosen factors is evaluated
in turn. For each factor, the OAT in the Morris method starts
on selected intervals. The Latin hypercube (LH) sampling
technique (McKay et al., 1979) is used to generate the starting
points for OAT. LH sampling is a stratified sampling
technique. It subdivides each factor into r intervals of equal
probability. Random values of the factors are generated such
that each interval is sampled only once for each factor,
resulting in r sets of non-overlapping samples. It can be
regarded as a global experiment because the experiment
covers the entire space over which the factors may vary. The
Morris method is independent of assumptions about the
model structure and works for monotonic and non—monoton-
ic (linear or non-linear) models alike. In addition, it has the
distinct advantage of a low computational cost. To evaluate
the effect of each factor on model output, the number of
model executions is » X (k + 1), where r is the number of
intervals and k is the number of factors.

Table 4 shows a hypothesized example. In this case, only
three factors are chosen for the sensitivity analysis with the
range of each factor subdivided into only two equal intervals.
For all factors, the range of interval 1 is 0.0 to 0.5, and the
range of interval 2 is 0.5 to 1. For each factor, each interval
is sampled only once, resulting in two sets of LH samples.
The A is a predetermined constant, 0.05, either positive or
negative, provided that after the change the value is still
within the same interval. In practical applications, the values
sampled in [0, 1] are subsequently rescaled to generate the
actual non-standardized values for the model input factors,
which are then fed into model input files for simulation runs.
The Morris method estimates the effect of each input factor
on the model output by computing a number of local
measures (see table 4 for Morris local measures) at different
points in the input space and then taking their average
(Morris, 1991; Saltelli et al., 2000Db).

In this study each of the 15 parameters in table 3 was
subdivided into 10 equal intervals (assuming uniform distribu-
tion); therefore, the total number of model evaluation for one
scenario was 160. In comparison, the Sobol method requires a
number of model evaluations such as 500 X (k +2), and the
extended FAST method requires about 200 X k (sensitivity
forum, http://sensitivity—analysis.jrc.cec.eu.int/).

Campolongo et al. (2005) proposed an enhanced version
of the Morris measure. The enhanced Morris measure is the
mean of the absolute values of Morris local measures.
Campolongo et al. (2005) believed that the enhanced Morris
measure is better than the traditional Morris mean for ranking
factors in order of importance. The reason is that if the Morris
local measures contain opposite signs, which occurs when
the model is non—-monotonic, then some effects may cancel

Table 4. Morris method for three factors, each with two intervals (LH = Latin hypercube sampling, OAT = one factor at a time).

Standardized Factor Value

Morris Local Measure

Factor Model
Set Factorl Factor2 Factor3 Output Factorl Factor2 Factor3

LH1 x1 x2 x3 yl

OAT 1 x1+A x2 x3 y2 y2-yl)/A

OAT 2 x1+A x2+A x3 y3 ¥3-y2)/A

OAT 3 x1+A x2+A x3+A v4 (y4-y3)/A
LH?2 xx1 xx2 xx3 y5

OAT' 1 xx1 xx2 +A xx3 y6 (yo-y5)/A

OAT 2 xx1 +A xx2 + A xx3 y7 y7-y6)/A

OAT 3 xx1 +A Xx2+A xx3 +A y8 y8-y7)/A
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Figure 4. Extended FAST sensitivity indices (N = 2895 simulations) and sensitivity ranking based on enhanced Morris measure (N = 160 simulations).
The site is within the Embarras watershed, in Lawrence County, Illinois. [2] Water yield = runoff + return flow + lateral subsurface flow.

each other out when computing the mean. Campolongo et al.
(2005) compared the sensitivity rankings based on variance—
based measures vs. rankings based on enhanced Morris mea-
sures. Their experimental results showed that the enhanced
Morris measure has the capability to distinguish between in-
fluential and non—influential model parameters at a reduced
computational cost.

Case Study to Compare the FAST and the Enhanced
Morris Method

A sample data set was randomly selected from the
database for APEX sensitivity analysis. It is within the
8—digital watershed 05120112, referred to as the Embarras
watershed, in Lawrence County, Illinois (approx. 38° N,
87° W). The soil is Sparta loamy sand, and the crop is winter
wheat. The average annual precipitation is 1027 mm. The
extended FAST total sensitivity indices for the 15 parameters
in table 3 are plotted in figure 4 for different APEX outputs.
Figure 4 also shows model parameters ranked 1 to 4
according to enhanced Morris measures. Results confirm
that, with just 160 model executions compared to the
extended FAST of 2895 model executions, the enhanced
Morris measure is capable of identifying the subset of
influential parameters.

The influential (ranking 1st to 4th) parameters for each
APEX output based on extended FAST and enhanced Morris
measure are very similar. The 1st and 2nd rankings were
identical for 7 out of 9 of the APEX outputs. For the other two
(P loss and N loss in sediment), the 1st and 2nd rankings were
reversed. In this test case, six non-influential parameters
(RGSS, NFIX, MFSG, BMEF, BMMD, and TERD), which
are ranked 10 to 15 based on both extended FAST and
enhanced Morris measure, could be fixed, while the other
nine parameters are considered for calibration depending on
the interest of APEX outputs. For example, if the sole interest
is water yield, the model could be calibrated based on RFP,
HPETE, and CNIC.For the nine APEX outputs, the enhanced
Morris measure never confounds groups of influential and
non—influential parameters. This test case, together with the
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tests reported by Campolongo et al. (2005), confirmed the
reliability of the enhanced Morris measure in screening a
subset of influential parameters. This is important for the
national analysis, where efforts can only focus on the
influential parameters for calibration purposes.

RESuULTS OF ENHANCED MORRIS METHOD
AND DISCUSSION

The enhanced Morris sensitivity measure was saved in a
Microsoft Access table (MorrisMean). The MorrisMean
table includes an ID identifier for each location in figure 1.
Because the representative datasets selected for the sensitiv-
ity analysis were from the National Nutrient Loss and Soil
Carbon database (NNLSC) (Potter et al., 2006), the same ID
identifier as in the NNLSC was used in the MorrisMean table,
but not renumbered from 1 to 159. The ID is linked with
specific site information, daily weather, soil characteristics,
field management, and model parameters for crops, fertiliz-
ers, tillage operations, pesticides, and others. For the
enhanced Morris sensitivity analysis, 160 continuous simula-
tions of 42—year intervals were conducted for each ID with
only the parameters listed in table 3 being changed. These
parameters were listed as the field names of the resulting
table MorrisMean. The enhanced Morris measures for each
parameter based on APEX yearly and annual average outputs
(except that the soil organic carbon change is only for the
simulation period) were recorded. Enhanced Morris mea-
sures show that only a few parameters are influential on
APEX outputs. Figure 5 plots the Morris measures for
influential parameters for runoff (CNIC and HPETE), soil
loss by water (CNIC, RCFC, and HPETE), and soil loss by
wind (UXP, PHU, and SWLL) as examples. Figure 5
illustrates that sensitivities are dynamic in the temporal
dimension, as indicated by Ratto et al. (2001). Changes in
sensitivity from year to year occur because climate variables,
temperature, and precipitation are model inputs that interact
with other model parameters.
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Figure 5. Sensitivities of yearly and annual average outputs to APEX parameters for ID 53631 in the 8-digital watershed 03040201, in Dillon County,

South Carolina.

The parameter rankings based on average annual outputs
were saved in a Microsoft Access table (RANK) where ID,
output, and rankl1 to rank15 are field names. There are ten
records, each for one of the ten APEX outputs, for each ID.
Parameters are listed for each output by importance based on
the enhanced Morris measures. Hence, it is convenient to find
the influential parameters for different APEX outputs. The
RANK and MorrisMean tables can serve as references
(ftp.brc.tamus.edu) for other APEX model users in finding
influential parameters for similar modeling conditions by
simply creating a query of interest. For this national
assessment, efforts were focused only on very influential
parameters. Therefore, statistical analyses were performed to
determine the frequencies with which parameters appeared
in 1st and 2nd ranking for each APEX output studied. Thus,
the percentage of relative importance of parameters can be
calculated. Figure 6 shows the percentage importance of
parameters ranked 1st for the ten APEX outputs, with only
the percentage greater than 5% and the total percentage for
all the other parameters illustrated. CNIC was very influen-
tial in simulating runoff (over 90% importance). Correspond-
ingly, its percentage importance is high for other
water—related output variables, e.g., over 80% importance
for soil loss by water. UXP is exclusively ranked 1st for wind
erosion, and FHP is greatest in importance for soil organic
carbon change.

Figure 7 shows the percentage importance of the parame-
ters ranked 2nd, with only the percentage superior to 5% and
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the total percentage for all the other parameters illustrated.
HPETE has over 90% importance in the ranked 2nd list for
runoff. SPRC has over 85% importance in the ranked 2nd list
for P loss in runoff. In general, there are more diverse
parameters with over 5% importance ranking 2nd than
parameters with over 5% importance ranking 1st for model
outputs (see figs. 6 and 7). This is also true for the ranking 3rd
parameters (not presented). This indicates that although
sensitivities are dynamic, the very influential parameters
appear very influential in most cases, whereas the parameters
with lower rankings are more diverse. Table 5 summarizes
the influential parameters identified for the APEX outputs
based on the frequencies (or percent importance) of parame-
ters that appear in the 1st and 2nd ranking. Overall, CNIC is
influential for most APEX outputs except for soil loss by
wind. Four parameters (HPETE, MFSG, RCFC, and PHU)
are influential for more than two APEX outputs studied.
Another seven parameters are influential for only one APEX
output studied, e.g., UXP and SWLL are influential for wind
erosion. In general, by the percentage of relative importance
among all the cases in the database, NFIX, BMEF, and
BMMD are not influential. The sensitivity analysis was
performed for only the 15 parameters in table 3. Other input
parameters (e.g., upland slope and initial organic carbon)
were not analyzed in this study; however, they may have
greater influence than that of these analyzed parameters on
APEX outputs.
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Figure 6. Percentage importance of parameters ranked 1st for APEX out-
puts, with only the percentage >5% and the total percentage for all the
other parameters illustrated. Percentage importance is based the fre-
quencies of parameters appeared in the 1st ranking.

CONCLUSIONS

Representative sets of APEX model data from across the
U.S. were used for sensitivity analysis to determine influen-
tial parameters on APEX outputs of crop grain yields,
runoff/water yield, water and wind erosion, nutrient losses in
runoff and sediment, and soil carbon change for a national
assessment project. Both the variance—based sensitivity

od were used for a sample case, randomly selected from the
APEX database, to test if the enhanced Morris measure is
generally comparable with the variance—based total sensitiv-
ity index in identifying the influential parameters. The test
case confirmed the reliability of the enhanced Morris mea-
sure in screening subsets of influential and non-influential
parameters. Therefore, for the national assessment,
where the cost of applying variance—based techniques would
be excessive, the enhanced Morris method was used.

The enhanced Morris measure based on yearly outputs
illustrates that sensitivities are dynamic in the temporal
dimension, mainly as a result of year—to—year climatic
differences. Although sensitivities are dynamic in both

Table 5. Influential parameters (checked) for APEX outputs at the national scale.

Output CNIC HPETE MFSG RCFC PHU UXP SWLL SPRC FHP RFP RGSS TERD
YLD Yes Yes Yes Yes
SED Yes Yes Yes
YWND Yes Yes Yes
Q Yes Yes
YN Yes Yes
QN Yes Yes Yes
YP Yes Yes Yes
QP Yes Yes
WwOoC Yes Yes Yes
WYD Yes Yes Yes
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temporal and spatial dimensions, the very influential param-
eters appear very influential in most cases, and the parame-
ters with lower ranking are more diverse. At the national
level, the influential parameters were identified for the ten
APEX average annual outputs based on the frequencies of pa-
rameters appeared in the 1st and 2nd ranking. For crop grain
yield, the potential heat units (PHU), root growth soil
strength (RGSS), moisture fraction required for seed ger-
mination (MFSG), and the NRCS curve number index coeffi-
cient (CNIC) are influential. CNIC, RUSLE C factor
coefficient (RCFC), and MFSG are influential to soil loss by
water. Soil loss by wind is significantly impacted by the pow-
er parameter of modified exponential distribution of wind
speed (UXP), soil water lower limit of water content in the
top 0.5 m soil depth (SWLL), and the Hargreaves PET equa-
tion exponent (HPETE). CNIC and HPETE are important to
runoff. The fraction of humus in passive pool (FHP) and ex-
ponential coefficient of tillage effect on residue decay rate
(TERD) are important to soil organic carbon change. CNIC,
HPETE, and the return flow ratio (RFP) are influential to wa-
ter yield. In general, CNIC is influential for most APEX out-
puts except for soil loss by wind. HPETE, MFSG, RCFC, and
PHU are influential for more than two APEX outputs. The
sensitivity results were within the limitation that only the 15
parameters in table 3 were considered for the analysis in this
study.

The enhanced Morris measures of APEX yearly and
annual average outputs to 15 selected APEX parameters were
saved in a Microsoft Access table (MorrisMean); the
corresponding ranking of parameters based on APEX annual
average outputs was saved in another Microsoft Access table
(RANK). Both MorrisMean and RANK have ID identifiers
linking with specific site information, daily weather file, soil,
field management, and other model parameters. Encapsulat-
ing the spatial and climatic variability, the RANK and
MorrisMean Access tables can serve as references
(ftp.brc.tamus.edu) for other APEX model users for similar
modeling conditions.
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